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1 Introduction

In this note, I prove the equivalence of the multiple different definitions of jointly
Gaussian random vectors. This is a pretty optional note since I go more in depth
than really needed for any practical purpose.

2 Sum of Independent Normal Random Vari-
ables

Before we prove for equivalence, we need to first hash out a lemma that proves
the that the sum of independent normal random variables is also normal.

Lemma 1 (Sum of Two Standard Independent Normal Random Variables).
The sum of two standard independent normal random variables is still normal.
That is, let Z = aX1 + bX2 such that Xi ∼ N(0, 1) for i = 1, 2. Then Z ∼
N(0, a2 + b2).

Proof. Since X1 and X2 are independent,

f(x1, x2) = f(x1)f(x2) =
1

2π
e−(x2

1+x2
2)/2 (1)

Since f(x1, x2) is symmetric around the origin, f(T (x1, x2)) = f(x1, x2) if T is
a rotation of the plane R2 around the origin. Then, for any t ∈ R there exists
a set A ⊆ R2 such that

P[Z ≤ t] = P[aX1 + bX2 ≤ t]
= P[(X1, X2) ∈ A]

= P[(X1, X2) ∈ T (A)]

= P[X1 ≤
t√

a2 + b2
]

= P[
√
a2 + b2X1 ≤ t]

(2)
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The fourth line of equation 2 can be derived by applying a transformation that
rotates the original line to be parallel to the x2 axis on the positive side of x1.
In other words, we rotate the line ax1 + bx2 = t to be x = t√

a2+b2
.

With equation two, we can conclude that Z has the same distribution as
√
a2 + b2X1,

so Z ∼N(0, a2 + b2).

Lemma 2 (Sum of Two Independent Normal Random Variables). The sum of
two independent normal random variables is still normal. That is, let Z = aX1+
bX2 such that Xi∼N(µi, σ

2
i ) for i = 1, 2. Then Z ∼N(aµ1 + bµ2, a

2σ2
1 + b2σ2

2).

Proof. Z1 = (X1 − µ1)/σ1 and Z2 = (X2 − µ2)/σ2 are standard independent
normal random variables. So,

Z = aX1 + bX2 = a(µ1 + σ1Z1) + b(µ1 + σ2Z2)

= (aµ1 + bµ2) + (aσ1Z1 + bσ2Z2)
(3)

Lemma 1 implies that (aσ1Z1 + bσ2Z2) ∼ N(0, a2σ2
1 + b2σ2

2), so Z ∼ N(aµ1 +
bµ2, a

2σ2
1 + b2σ2

2).

Lemma 3 (Sum of Independent Normal Random Variables). The sum of in-
dependent normal random variables is still normal. That is, let Z = a1X1 +
a2X2 + ...+ anXn such that Xi∼N(µi, σ

2
i ) for i = 1, ..., n. Then Z∼N(a1µ1 +

a2µ2 + ...+ anµn, a
2
1σ

2
1 + a2

2σ
2
2 + ...+ a2

nσ
2
n).

Proof. We will prove this using induction.
Base Cases: n = 1 is trivially true. Lemma 2 shows n = 2 is true.
Inductive Hypothesis: For some k > 2, let Z ′ = a1X1 + a2X2 + ...+ akXk such
that Xi∼N(µi, σ

2
i ) for i = 1, ..., k. Then Z ′∼N(a1µ1 +a2µ2 + ...+akµk, a

2
1σ

2
1 +

a2
2σ

2
2 + ...+ a2

kσ
2
k).

Inductive Step: We have to show that if Z = a1X1 + a2X2 + ... + ak+1Xk+1

such that Xi ∼ N(µi, σ
2
i ) for i = 1, ..., k + 1, then Z ∼ N(a1µ1 + a2µ2 + ... +

ak+1µk+1, a
2
1σ

2
1 + a2

2σ
2
2 + ... + a2

k+1σ
2
k+1). We know that Z = Z ′ + ak+1Xk+1.

Since both Z ′ and ak+1Xk+1 are normally distributed and independent, Z ∼
N(a1µ1 + a2µ2 + ...+ ak+1µk+1 by lemma 2 (i.e. the n = 2 case).

3 Jointly Gaussian Random Vector Definitions

There are many equivalent definitions for a jointly Gaussian (JG) random vector:

1. A random vector Z = (Z1, ..., Zk)T is JG if there exists a base random
vector U = (U1, ..., Ul) whose components are independent standard nor-
mal random variables, a transition matrix R ∈ Rk×l, and a mean vector
µ ∈ Rk, such that Z = RU + µ.

2. A random vector Z = (Z1, ..., Zk)T is JG if
∑k
i=1 aiZi is normally dis-

tributed for every ai ∈ R.
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3. (Only if Σ is full rank a.k.a non-degenerate case) A random vector Z =
(Z1, ..., Zk)T is JG if

fZ(~z) =
1√
|Σ|

1

(2π)k/2
e−

1
2 (~z−µ)T Σ−1(~z−µ) (4)

where Σ is the covariance matrix of Z. In other words, Σ = E[(Z−µ)(Z−
µ)T ] = E[(RU)(RU)T ] = RE[UUT ]RT = RRT

4 Proofs of Equivalence

4.1 Proving (1) =⇒ (2)

We have to prove that
∑k
i=1 aiZi is normally distributed given that Z = RU+µ.

Let us define R = (~r1, ..., ~rk)T such that ~ri ∈ Rl. Then,

k∑
i=1

aiZi =

k∑
i=1

ai(~r
T
i U + µi) =

k∑
i=1

(ai~r
T
i U + aiµi) (5)

By lemma 3,
∑k
i=1 aiZi must be normally distributed because it equals the sum

of multiple standard independent normal random variables (i.e. components of
U).

Remark. Note that we can construct cases were the summation turns out to
be a constant. However, we still consider these point means to be normal with
variance 0.

4.2 Proving (2) =⇒ (1)

Lemma 4. Cov(AX) = ACov(X)AT where X is an n-dimensional random
vector and A ∈ Rn×n.

Proof.
Cov(AX) = E[(AX − E[AX])(AX − E[AX])T ]

= E[(AX −AE[X])(AX −AE[X])T ]

= E[A(X − E[X])(X − E[X])TAT ]

= AE[(X − E[X])(X − E[X])T ]AT

= ACov(X)AT

(6)

With lemma 4, we can now show that if
∑k
i=1 aiZi is normally distributed, then

Z = RU + µ.
Define µ = E[Z] and Σ = Cov(Z) = E[(Z − µ)(Z − µ)T ]. Since Σ is sym-
metric and positive semidefinite, we can write Σ = RRT where R is the same
dimensionality as Σ. Now consider the new random variable U = R−1(Z − µ).
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We know that U is normal since we have assumed that
∑k
i=1 aiZi is normally

distributed (notice that U is just a linear combination of the components of Z).
We also know that E[U ] = E[R−1(Z − µ)] = R−1E[Z − µ] = R−1(0) = 0 and
Cov[U ] = Cov[R−1(Z − µ)] = R−1Cov(Z − µ)(R−1)T = R−1RRT (R−1)T = I.
In other words, we know that U consists of independent standard normal ran-
dom variables such that Z = RU + µ.

Remark. Notice that within the proof, we have assumed that R is invertible
since we took R−1. However, R does not have to be invertible. If R is not
invertible, that simply means that Z only needs to be written as a linear combi-
nation of a subset of all the standard normal components in U (i.e. If R is not
invertible, Σ = RRT is not invertible which indicates that one of the random
variables Zi can be written as a linear combination of the others).
So, when R is not invertible, instead of using R−1 for our proof, we take the
pseudoinverse of R with singular value decomposition (SVD) instead. That is,
by SVD, R = UΣRV

T where U and V are orthonormal and ΣR is a diagonal
matrix with non-negative numbers on its diagonal. We define the pseudoinverse
to be R+ = V Σ−1

R UT where the zeros on the diagonal of Σ−1
R remain as zeros.

Thus, we can show that R+R = RR+ =

[
Ir×r 0

0 0

]
where r is the rank of R by

simply multiplying their decompositions together.
With this, we can see that E[U ] = E[R+(Z−µ)] = 0 and Cov[U ] = Cov[R+(Z−

µ)] = R+RRT (R+)T =

[
Ir×r 0

0 0

]
. We reach the same conclusion.

4.3 Proving (1) =⇒ (3)

First, we need to show that fU (~u) = |R|fZ(~z) where ~z = R~u+ µ.
Let R′ represent an arbitrary region in the U space. Then,

P[U ⊆ R′] =

∫
...

∫ ∫
R′
fU (~u)d~u (7)

Let us the transformation T as transforming a vector ~u ∈ U to R~u + ~µ ∈ Z.
Then,

P[Z ⊆ T (R′)] =

∫
...

∫ ∫
T (R′)

fZ(~z)d~z

=

∫
...

∫ ∫
R′
fZ(~z)|∂~v

∂~u
|d~u

=

∫
...

∫ ∫
R′
fZ(~z)|R|d~z

(8)
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Line 3 of equation 8 is true because the jacobian matrix ∂~v
∂~u = ∂(R~u+~µ)

∂~u = R.
Since P[U ⊆ R′] = P[Z ⊆ T (R′)], fU (~u) = |R|fZ(~z). Then,

fZ(~z) =
1

|R|
fU (R−1(~z − ~µ))

=
1

|R|

k∏
i=1

fUi((R
−1(~z − ~µ))i)

=
1

|R|

k∏
i=1

(
1√
2π
e−

1
2 (R−1(~z−~µ))2i )

=
1

|R|
1

(2π)k/2
e−

1
2 (R−1(~z−~µ))T (R−1(~z−~µ))

=
1

|R|
1

(2π)k/2
e−

1
2 (~z−~µ)T (RRT )−1(~z−~µ))

(9)

RRT = Σ and |Σ| = |RRT | = |R|2, so

fZ(~z) =
1√
|Σ|

1

(2π)k/2
e−

1
2 (~z−~µ)T Σ−1(~z−~µ))

(10)

4.4 Proving (3) =⇒ (1)

For the proof above, the whole process is reversible. So we can just do what we
did in 4.3 but in reverse to proof this implication.

5 Misconceptions

5.1 Marginal Gaussians 6=⇒ JG Vector

Looking at the three definitions for JG random vectors, we might assume that
a random vector Z = (Z1, ..., Zk)T is JG if Zi is normally distributed for all
i = 1, ..., k. However, this is not true. While JG random vectors have marginal
gaussians (i.e. if

∑k
i=1 aiZi is normally distributed for every ai ∈ R, simply

plug in combinations of (a1, a2, ..., ak) such that one of the values is one and the
rest are zero to see that each individual Zi is normally distributed), marginal
gaussians don’t necessarily form a JG random vector (i.e. the converse is not
true).

Proof. We will construct a counterexample where a two normal random vari-
ables aren’t JG when put together in a vector. Consider X ∼ N(0, 1) and
Y = X(2B − 1) where B ∼ Bernoulli(1/2) (i.e. Y = ±X with probability 1/2).

We already know that X is normal, but we need to show that Y is normal
as well. We know that

P(Y ≤ y) =
1

2
(P(Y ≤ y|B = 1) + P(Y ≤ y|B = 0)) (11)
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We can now break down the two terms on the right:

P(Y ≤ y|B = 1) = P(X ≤ y) = Φ(y) (12)

P(Y ≤ y|B = 0) = P(−X ≤ y)

= P(X ≥ −y)

= 1− P(X < −y)

= 1− Φ(−y)

= Φ(y)

(13)

Now we can solve equation 11:

P(Y ≤ y) =
1

2
(Φ(y) + Φ(y)) = Φ(y) (14)

Thus Y ∼N(0, 1). We know that X and Y are both normally distributed. But
now, we will show that they are not JG. We will look at the definition 2 of JG,
where every linear combination of a JG vector’s components must be normal.
This case doesn’t follow definition 2 since

X + Y =

{
2X if B = 1

0 if B = 0
(15)

In other words, X +Y is a 50/50 mixture model of N(0, 4) and a point mass at
0, which is not normal.

Remark. X +Y is not normal because P[X +Y < 0] = 1
2P[2X < 0] = 1

2P[X <
0] = Φ(0)/2 = 1/4. This is impossible for a normal distribution since for any
Z ∼N(0, σ2), P[Z < 0] = 1/2.

Remark. Note that we had to construct a really artificial example to in order to
disprove this implication. This gives us a hint that common normal distributions
are probably jointly normal.

5.2 Uncorrelated Normal Variables 6=⇒ Independence

Uncorrelated normal variables are only guaranteed to be independent if they are
JG. Note that we can prove this by looking at the JG distribution (for simplicity,
let us look at only two uncorrelated normal variables):

fZ

(
x
y

)
=

∣∣∣∣ΣXX 0
0 ΣY Y

∣∣∣∣− 1
2 1

(2π)k/2
e
− 1

2

(
x− µx y − µy

)ΣXX 0
0 ΣY Y

−1x− µx
y − µy



=
∣∣ΣXX ∣∣− 1

2
1

(2π)kx/2
e−

1
2 (x−µx)T Σ−1

XX(x−µx)

∣∣ΣY Y ∣∣− 1
2

1

(2π)ky/2
e−

1
2 (y−µy)T Σ−1

Y Y (y−µy)

= fX(x)fY (y)
(16)
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However, if uncorrelated normal variables are not JG, they aren’t guaranteed
to be independent. We first need to prove a fundamental lemma with expected
value before we go into an explanation for why this is true:

Lemma 5 (Expected Value of Two Variables). Let X and Y be random vari-
ables. Then,

E[g(X,Y )] = EX [EY [g(X,Y )|X]] = EY [EX [g(X,Y )|Y ]] (17)

Proof. We can prove this by breaking expected value into integral form. Let
fX,Y (x, y) be the joint distribution of X and Y.

E[g(X,Y )] =

∫ ∞
−∞

∫ ∞
−∞

g(x, y)f(x, y)dxdy

=

∫ ∞
−∞

∫ ∞
−∞

g(x, y)f(y)
f(x, y)

f(y)
dxdy

=

∫ ∞
−∞

∫ ∞
−∞

g(x, y)f(y)f(x|y)dxdy

=

∫ ∞
−∞

f(y)

∫ ∞
−∞

g(x, y)f(x|y)dxdy

=

∫ ∞
−∞

f(y)EX [g(X,Y )|Y ]dy

= EY [EX [g(X,Y )|Y ]]

(18)

We can prove for the other form by using f(x,y)
f(x) instead of f(x,y)

f(y) in line 2.

Now that we have lemma 5, a good counterexample to why two normal variables
being uncorrelated doesn’t guarantee independence is the example we showed
in 5.1 with X ∼N(0, 1) and Y = X(2B − 1) where B ∼ Bernoulli(1/2). Here,

Cov(X,Y ) = Cov(X, (2B − 1)X)

= E[(2B − 1)X2]− E[X]E[(2B − 1)X]

= E[(2B − 1)X2]− (0)E[(2B − 1)X]

= E[(2B − 1)X2]

= E(2B−1)[EX [(2B − 1)X2|(2B − 1)]]

= E(2B−1)[2B − 1]

= 0

(19)

Here, X and Y are normal and uncorrelated. Yet, by definition they are obvi-
ously dependent.
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